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Oscillatory correlation of delayed random walks
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~Received 8 May 1996; revised manuscript received 7 October 1996!

We investigate analytically and numerically the statistical properties of a random walk model with delayed
transition probability dependence~delayed random walk!. The characteristic feature of such a model is the
oscillatory behavior of its correlation function. We investigate a model whose transient and stationary oscil-
latory behavior is analytically tractable. The correspondence of the model with a Langevin equation with delay
is also considered.@S1063-651X~97!51402-4#

PACS number~s!: 02.50.2r, 05.90.1m, 87.10.1e
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Noise and correlative effects~memory! are two elements
which are associated with many natural systems. In phys
two main approaches have been developed to study
systems with noise and memory. One approach is formu
ing the model in physical space with a differential equat
of motion such as the ‘‘generalized Langevin equatio
@1,2#. The other is to formulate a model in probability spa
as a non-Markovian problem as in the ‘‘generalized mas
equation’’ approach@3#. These two avenues have been d
veloped and applied to various problems in physics. E
amples include studies on the Alder-Wainwright effect@4#,
spin relaxation@5#, and driven two-level atoms@6#.

The delayed stochastic system we discuss here ca
viewed as a special case, where only a single~memory! point
at a fixed time interval in the past has influence on the c
rent state of the system. Research of such systems, pa
larly those with no noise, has been carried out in fields
mathematics@7#, biology @8#, artificial neural networks@9#,
electrical circuits@10#, as well as in physics@11#. Models
with both noise and delay have also been considered num
cally @12# and analytically as an extension of the Langev
equation@13#. These works represent approaches and form
lations in physical space. For the probability space appro
‘‘delayed random walk’’ is recently proposed@14# and has
been applied to model human posture controls@15#. How-
ever, an analytical understanding of this random walk is
far from being complete.

The main theme of this paper is to increase the analyt
understanding of the behavior of a delayed random w
model. The oscillatory correlation function is found to b
associated with delayed random walks@14,16#. We show
here that such oscillatory behavior of the correlation funct
is analytically tractable. From the point of view of the stu
of random walks, this delayed random walk model provid
an example whose correlation function behaves differe
compared to commonly known random walks with memo
such as self-avoiding, or persistent walks@17#. In addition,
we note that oscillatory or chaotic behavior associated w
delays is generally difficult to analyze@12#. Hence, this
model also serves as one of the rare analytically tracta
examples among models with delay.

We consider a random walk which takes a unit step i
unit time. The delayed random walk we start with is an e
tension of a position dependent random walk whose s
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toward the origin is more likely when no delay exists. Fo
mally, it has the following definition:

P~Xt115n;Xt112t5s!

5g~s21!P~Xt5n21;Xt112t5s;Xt2t5s21!

1g~s11!P~Xt5n21;Xt112t5s;Xt2t5s11!

1 f ~s21!P~Xt5n11;Xt112t5s;Xt2t5s21!

1 f ~s11!P~Xt5n11;Xt112t5s;Xt2t5s11!, ~1!

f ~x!1g~x!51, ~2!

where the position of the walker at timet is Xt , and
P(Xt1

5u1 ;Xt2
5u2) is the joint probability for the walker to

be at u1 and u2 at time t1 and t2, respectively.f (x) and
g(x) are transition probabilities to take a step to the nega
and positive directions respectively at the positionx. In this
paper, we further place the conditions

f ~x!.g~x! ~x.0!, f ~2x!5g~x! ~;x!. ~3!

These conditions make the delayed random walks symme
with respect to the origin, which is attractive without dela
(t50).

We now proceed to obtain a few properties from this ge
eral definition. By the symmetry with respect to the orig
the average position of the walker is 0. This symmetry
further used to inductively show@18# in the stationary state
(t→`) that

P~Xt115n;Xt5n11!5P~Xt115n11;Xt5n!. ~4!

We derived the stationary probability distribution for the pr
viously discussed delayed random walk model using t
property@14#. Also, the multiplication of Eq.~1! for the sta-
tionary state by cos(an) and summation overn ands yields
for the generating function:

^cos~aXt!&5cos~a!^cos~aXt!&

1sin~a!^sin~aXt!$ f ~Xt2t!2g~Xt2t!%&.

~5!

In particular, we have the following invariant relationsh
with respect to the delay:
R1255 © 1997 The American Physical Society
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1

2
5^Xt$ f ~Xt2t!2g~Xt2t!%&. ~6!

This invariant property is used below.
We will consider a specialized model for the rest of this paper@19#. We definef (x) andg(x) as

f ~x!5
1

2
~112d! ~x.a!,

1

2
~11bx! ~2a<x<a!,

1

2
~122d! ~x,2a!,

g~x!5
1

2
~122d! ~x.a!,

1

2
~12bx! ~2a<x<a!,

1

2
~112d! ~x,2a!. ~7!
-
s

tl
e

ye
he
ch

on

lex.

g.

und
ve-

te
ary
ions

on
a
to
for
e

Physically, this model implies that whent50 the transition
probability for the walker to move toward the origin in
creases linearly at a rate ofb[d/a as the distance increase
from the origin up to the potitiona after which the transition
probability is held constant. We assume that with sufficien
largea, we can ignore the probability for the walker to b
outside of the range (2a,a).

Then, the previous invariant relation in Eq.~6! becomes
the following with this model:

^XtXt2t&5K~t!5
1

2b
. ~8!

This invariance with respect tot of the correlation function
with t steps apart is a simple characteristic of this dela
random walk model. This property is a key to obtaining t
analytical expression for the correlation function, to whi
we now turn our attention.

For the stationary state and 0<u<t, the following is ob-
tained from the definition~1!.

P~Xt5n;Xt2u5 l !

5(
s
g~s!P~Xt5n21;Xt2~u21!5 l ;Xt2t5s!

1(
s

f ~s!P~Xt5n11;Xt2~u21!5 l ;Xt2t5s!. ~9!

We can derive the following equation for the correlati
function by multiplication of this equation bynl and sum-
ming over.

K~u!5K~u21!2bK~t112u! ~0<u<t!. ~10!

A similar argument gives fort,u,

K~u!5K~u21!2bK~u212t! ~t,u!. ~11!

Equations~10! and~11! can be solved explicitly using~8!. In
particular, for 0<u<t we obtain

K~u!5K~0!
~m1

u 2m1
u21!2~m2

u 2m2
u21!

m12m2
2
1

2

~m1
u 2m2

u !

m12m2
,

K~0!5
1

2b

~m12m2!1b~m1
t 2m2

t !

~m1
t 2m1

t21!2~m2
t 2m2

t21!
y

d

m65S 12
b2

2 D6
b

2
Ab224. ~12!

For t,u, it is possible to writeK(u) in a multiple summa-
tion form, though the expression becomes rather comp
For example, witht,u<2t,

K~u!5
1

2b
2b (

i50

u212t

K~ i ! ~13!

whereK( i ) summed is given by Eq.~12!.
The behavior of the correlation function is shown in Fi

1. As we increaset, oscillatory behavior of the correlation
function appears. The decay of the peak envelope is fo
numerically to be exponential. The decay rate of the en
lope for smallu is approximately 1/@2K(0)#. Also we note
the mean square postion@K(0)# increases with increasing
delayt.

Analysis of the correlation function for the transient sta
can be done with a similar argument as in the station
state. We can derive the set of coupled dynamical equat
as follows:

K~0,t11!5K~0,t !1122bK~t,t !,

K~u,t11!5K~u21,t !

2bK„t2~u21!,t112u… ~1<u<t!

K~u,t11!5K~u21,t !

2bK„~u21!2t,t112u… ~u.t! ~14!

For the initial condition, we need to specify the correlati
function for the interval of initialt steps. Let us consider
random walk, which is held at the origin before it begins
take a step, thus performing a homogeneous random walk
the steps (1,t). This translates to the initial condition for th
correlation function as

K~u,t !5t2u ~0<u<t!. ~15!
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FIG. 1. Stationary correlation functionK(u) from simulations~dots! as a function of stepsu with varyingt compared with the analytica
solution obtained in the text~line!. The parameters are set asa550,d50.4, andt5(a)10, (b)40, (c)60, (d)80. The simulation performe
random walks of 6000 steps starting from the origin. The position data after 4500 steps are used to compute the correlation and
over 10 000 trials.
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The solution can be iteratively generated for Eq.~14! given
this initial condition. We have plotted some examples for
dynamics of the mean square displacementK(0) in Fig. 2.
Again, the oscillatory behavior arises with increasingt.
Hence, in the model discussed here the oscillatory beha
with increasing delay appears in both its stationary and tr
sient states.

Let us now briefly discuss relationship of this model
the Langevin equation with delay:

d

dt
Xt52bXt2t1j t , ^j t1j t2&5d~ t12t2!. ~16!

FIG. 2. Examples of dynamics of the mean square posi
^X2&5K(0) with varying delayt. The data are from simulation
~dots! averaged over 10 000 trials, and from the analytical soluti
~line!. The parameters are set asa550, d50.45, and
t5(a)20, (b)40, (c)60.
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This Langevin equation is a special case of the equation c
sidered in@13#. It should be noted that the equation is no
malized with the ‘‘width’’ of the noisej t . It has been shown
that ~1! the equation is stationary if and only ift,p/2b;
and ~2! the stationary correlation functionK(r )[^XtXt2r&
has the following form whenr,t:

K~r !5K~0!cos~br !2
1

2b
sin~br !, K~0!5

11sin~bt!

2bcos~bt!

~17!

Whenb!1 ~or a@d), the delayed random walk mode
approximately corresponds to this Langevin equation w
delay. In particular, we can obtain Eq.~17! from the result
~12! obtained for the delayed random walk, by expanding
smallb.

Some points of discussion are now in order. The fi
point is how this model is placed in relation to other mod
with noise and delay~or memory, to be more general!. In
particular we note that the Langevin equation discussed h
is not a special case of the generalized Langevin equa
which is consistent with the fluctuation-dissipation theore
As argued in@1# for the generalized Langevin equation, th
noise term needs to be ‘‘colored’’ in Eq.~16! for consis-
tency. Investigation of the colored noise case in its relation
delayed random walks as well as further studies of the c
respondence of dynamical aspects of~1! and ~16! are cur-
rently underway. Finally, we ask what the possible appli
tions are of delayed random walks. As mentioned before,
model with a different transition property has been appl
@14# to describe the qualitative statistical behavior of the c
ter of gravity in a human posture control experiment@15#.
Also, oscillatory correlation functions appear in such n
merical studies of phase separation dynamics under stir
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@20# and of response dynamics of neural recepter cell syn
tium @21#. Applications or relations to these and other sy
tems are currently being sought and considered.

The model provided here is simple, yet has shown so
characteristics of systems with noise and delay. It is ho
that further investigation of this and extended delayed r
ys

. A
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dom walks will provide us deeper understanding of delay
stochastic systems.
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