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Oscillatory correlation of delayed random walks
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We investigate analytically and numerically the statistical properties of a random walk model with delayed
transition probability dependenddelayed random walk The characteristic feature of such a model is the
oscillatory behavior of its correlation function. We investigate a model whose transient and stationary oscil-
latory behavior is analytically tractable. The correspondence of the model with a Langevin equation with delay
is also consideredS1063-651X97)51402-4

PACS numbegps): 02.50-r, 05.90+m, 87.10+e

Noise and correlative effectsnemory are two elements toward the origin is more likely when no delay exists. For-
which are associated with many natural systems. In physicsnally, it has the following definition:
two main approaches have been developed to study such
systems with noise and memory. One approach is formulat? (Xt+1
ing the model in physical space with a differential equation _ _ . . _
of motion such as the “generalized Langevin equation” =9(s=DP(X=n=1iXi =81 X =5 1)
[1,2]. The other is to formulate a model in probability space +9(s+1)P(X;=n—1;X;+1-,=S;X;—,=s+1)
as a non-Markovian problem as in the “generalized master
equation” approach3]. These two avenues have been de-

:n;XtJrl*T:S)

+f(s—1)P(X;=n+1;Xi;1_,=S;X_,=s—1)

veloped and applied to various problems in physics. Ex- +f(s+1)PX=n+1;Xs1_, =S X_,=s+1), (1)
amples include studies on the Alder-Wainwright effetl,
spin relaxatior[5], and driven two-level atomi6]. f(x)+g(x)=1, 2

The delayed stochastic system we discuss here can be
viewed as a special case, where only a sitiglemory point ~ Where the position of the walker at timeis X;, and
at a fixed time interval in the past has influence on the curP (X, =U1;X(,=U,) is the joint probability for the walker to
rent state of the system. Research of such systems, particbe atu; andu, at timet; andt,, respectively.f(x) and
larly those with no noise, has been carried out in fields ofg(x) are transition probabilities to take a step to the negative
mathematicg 7], biology [8], artificial neural networkg$9],  and positive directions respectively at the positiorin this
electrical circuits[10], as well as in physic§11]. Models  paper, we further place the conditions
with both noise and delay have also been considered numeri- B
cally [12] and analytically as an extension of the Langevin f)>g(x)  (x>0), f(=x)=g(x) (Vx). (3

equation13]. These works represent approaches and formurhese conditions make the delayed random walks symmetric

lations in physical space. For the probability space approackwith respect to the origin, which is attractive without delay
“delayed random walk” is recently proposdd4] and has (7=0).

been applied to model human posture contfdls]. How- We now proceed to obtain a few properties from this gen-
ever, an analytical understanding of this random walk is yeeral definition. By the symmetry with respect to the origin,
far from being complete. the average position of the walker is 0. This symmetry is

The main theme of this paper is to increase the analyticalurther used to inductively shoyi8] in the stationary state

understanding of the behavior of a delayed random walKt— ) that

model. The oscillatory correlation function is found to be _ _

associated with delayed random walKs4,16. We show P(Xi+1=nX=n+1)=P(X;1=n+1X;=n). (4

here tha’? such oscillatory behavior Of. the co_rrelatlon funCtlor\Ne derived the stationary probability distribution for the pre-

is analytically tractable. From the point of view of the study . v di d delaved d Ik del usi hi

of random walks, this delayed random walk model providesvIousy Iscussed delayed random walk model using this
' roperty[14]. Also, the multiplication of Eq(1) for the sta-

an example whose correlation function behaves differentl;ﬁonar state by cosf) and summation oven ands yields
compared to commonly known random walks with memory, thg generat);ng function: y

such as self-avoiding, or persistent wa{d¥]. In addition,

we note that oscillatory or chaotic behavior associated with (cog aX,))=cog a)(cog aX,))

delays is generally difficult to analyzEl2]. Hence, this

model also serves as one of the rare analytically tractable +sin(a)(sin(aX){f(X;— ;) —g(Xi-)})-

examples among models with delay. (5)
We consider a random walk which takes a unit step in a

unit time. The delayed random walk we start with is an ex-In particular, we have the following invariant relationship

tension of a position dependent random walk whose stewith respect to the delay:
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1
5= (X% =90% ). ©)

This invariant property is used below.
We will consider a specialized model for the rest of this pda8t. We definef (x) andg(x) as

f(x)=%(1+2d) (x>a), %(1+Bx) (—a=x=<a), %(1—2d) (x<-—a),

1 1 1
g(x)=§(1—2d) (x>a), E(l—,@x) (—asx<a), §(1+2d) (x<—a). )

Physically, this model implies that wher=0 the transition
probability for the walker to move toward the origin in-
creases linearly at a rate g=d/a as the distance increases
from the origin up to the potitioma after which the transition
probability is held constant. We assume that with sufficientlyFor 7<u, it is possible to writeK(u) in a multiple summa-
large a, we can ignore the probability for the walker to be tion form, though the expression becomes rather complex.
outside of the range<a,a). For example, withr<u<2r,
Then, the previous invariant relation in E@) becomes
the following with this model:

(12

2
m+=(1—'8—)t§\//37—4.

1 u—1-r

1 Kw=55-8 2 K (13
(XX ) =K(7)= 5 5. (8) 0

This invariance with respect to of the correlation function whereK(i) summed is given by Eq12).

with 7 steps apart is a simple characteristic of this delayed The behavior of the correlation function is shown in Fig.

random walk model. This property is a key to obtaining thel. As we increaser, oscillatory behavior of the correlation

analytical expression for the correlation function, to whichfunction appears. The decay of the peak envelope is found

we now turn our attention. numerically to be exponential. The decay rate of the enve-

For the stationary state and<u< r, the following is ob-  lope for smallu is approximately 1/2K(0)]. Also we note
tained from the definitioril). the mean square postigiK(0)] increases with increasing
delay 7.

Analysis of the correlation function for the transient state
can be done with a similar argument as in the stationary
state. We can derive the set of coupled dynamical equations
as follows:

P(Xi=n;X;_,=1)
=2 g(P(X=n=1 X (-1 =i X =9)

+§ f(SIP(Xi=n+1;Xi—u-1=I:X--=s). (9 K(0t+1)=K(0t)+1—2BK(r,t),
We can derive the following equation for the correlation

function by multiplication of this equation bgl and sum- K(u,t+1)=K(u=18

ming over. -BK(r—(u=1),t+1-u) (1l<u<r)
K(uy=K(u—1)—-BK(7+1-u) (0<u=<r7). (10
. . K(u,t+1)=K(u—1yt)
A similar argument gives for<u,
-BK({(u=1)—7t+1-u) (u>7) (149
K(uy=K(u—1)—-pK(u—-1-7) (7<u). (11

Equationg10) and(11) can be solved explicitly usin). In

particular, for Gsu<7 we obtain
(mt L(mi-mt)
2 my—m_

-mU ) —(mY—mU
m, —m_

K(u)=K(0)

1 (my—m_)+B(m,—m")
28 (m,—m H—(m”—m” %)

K(0)=

For the initial condition, we need to specify the correlation
function for the interval of initialr steps. Let us consider a
random walk, which is held at the origin before it begins to
take a step, thus performing a homogeneous random walk for
the steps (). This translates to the initial condition for the
correlation function as

K(ut)=t—u (O=su=r). (15
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FIG. 1. Stationary correlation functid(u) from simulationgdotg as a function of steps with varying = compared with the analytical
solution obtained in the textine). The parameters are setas 50,d=0.4, andr=(a)10, (b)40, (c)60, (d)80. The simulation performed
random walks of 6000 steps starting from the origin. The position data after 4500 steps are used to compute the correlation and averaged
over 10 000 trials.

The solution can be iteratively generated for Etd) given  This Langevin equation is a special case of the equation con-
this initial condition. We have plotted some examples for thesidered in[13]. It should be noted that the equation is nor-
dynamics of the mean square displaceme(®) in Fig. 2.  malized with the “width” of the noisé£; . It has been shown
Again, the oscillatory behavior arises with increasing that (1) the equation is stationary if and only #<w/28;
Hence, in the model discussed here the oscillatory behaviand (2) the stationary correlation functioki(r)=(XX;_,)

with increasing delay appears in both its stationary and trankas the following form whem < 7:

sient states.

Let us now briefly discuss relationship of this model to 1 1+sin(B7)
the Langevin equation with delay: K(r)=K(0)cog gr) - ﬁsm(ﬁr), K(0)= 2pBcod A1)
17)

When <1 (or a>d), the delayed random walk model
approximately corresponds to this Langevin equation with
delay. In particular, we can obtain E@L7) from the result
(12) obtained for the delayed random walk, by expanding in

d
ﬁxt: —BXi— &, <§t1§t2>:5(t1_t2)- (16)

g 120 ) small 8.
= 100 (c Some points of discussion are now in order. The first
4 * point is how this model is placed in relation to other models
‘: 80 with noise and delayor memory, to be more geneyaln
5 ¢ (b) particular we note that the Langevin equation discussed here
g 60 . v - - is not a special case of the generalized Langevin equation
) which is consistent with the fluctuation-dissipation theorem.
g 40 - — '(a') v ‘ As argued in[1] for the generalized Langevin equation, the
§ 20 noise term needs to be “colored” in E¢16) for consis-
tency. Investigation of the colored noise case in its relation to
0 delayed random walks as well as further studies of the cor-
50 100 150 200 250 300 respondence of dynamical aspects(bf and (16) are cur-
Steps rently underway. Finally, we ask what the possible applica-

tions are of delayed random walks. As mentioned before, the
FIG. 2. Examples of dynamics of the mean square positioinodel with a different transition property has been applied
(X2)=K(0) with varying delayr. The data are from simulations [14] to describe the qualitative statistical behavior of the cen-
(dots averaged over 10 000 trials, and from the analytical solutionde€r of gravity in a human posture control experimg¢b$].
(line). The parameters are set aa=50, d=0.45, and Also, oscillatory correlation functions appear in such nu-
7=(a)20, (b)40, (c)60. merical studies of phase separation dynamics under stirring
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[20] and of response dynamics of neural recepter cell syncydom walks will provide us deeper understanding of delayed
tium [21]. Applications or relations to these and other sys-stochastic systems.
tems are currently being sought and considered. )

The model provided here is Simp|e1 yet has shown some The author would like to thank Drs. Y. Okabe and K.
characteristics of systems with noise and delay. It is hope¢ymeno for discussions, and J. Milton and M. Mackey for
that further investigation of this and extended delayed ransuggestions of references.
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